一、基本情况
张冀,1988年6月出生,副教授,博士生导师,欧盟玛丽居里学者,英国UKRI postdoctoral fellow,湖南省海外高层次人才青年项目入选者,2024年度全球前 2%科学家。2016年至2020年期间,在在丹麦技术大学从事博士后研究工作。主要研究方向包括高效热管理系统、先进热储技术以及新能源发电系统优化;成果发表SCI高水平学术论文40余篇;公开/授权发明专利30余项,获北京市科学技术一等奖1项。
联系邮箱:jizhang@hnu.edu.cn
常年招收硕士、博士和博士后,欢迎各位学生提前联系、咨询、报考!
二、研究方向
1. 电气装备高效热管理
电机及其系统、电力电子系统及装置、动力/储能电池的散热系统设计、分析及优化
2. 先进热储技术
卡诺电池系统本体优化,基于热力系统的热电转化技术,高效换热器的研发
3. 新能源发电系统优化
基于卡诺电池储能系统的新能源风光消纳研究,风光发电功率预测与特征识别
三、主持的主要科研项目
1. 国家自然科学基金面上项目,基于超强导热材料的大型风力发电机增强型散热系统研究,52377047,2024.01-2027.12,50万元。
2. 全国重点实验室开放课题项目,一种基于热储能的风力发电机防冰技术,2024.04-2025.10,49万元。
3. GFKGJ“十四五”技术基础科研计划课题,超导TJ点击关键部件制备工艺提升与验证,2023.01-2025.12,100万元。
4. 国家重点研发计划项目子课题,20 兆瓦级海上新型风力发电实现机理及关键技术,2022YFB4201500,2022.12-2026.05,65万元。
5. 国家重点研发计划项目子课题,风电机群服役全周期质量评估与调控技术研究,2022YFF0608700,2022.10-2026.03,45万元。
6. 国家重点研发计划政府间国际合作项目课题,基于MHPA超级导热材料的BIPVT零能耗建筑供能协同储能关键技术研究,2022YFE0118500,2023.01-2025.12,30万元。
主持、参与国家电网、三峡集团、中国电建、湘电股份、哈电风能等多项企业委托项目。
四、代表性专利
[1] 张冀;吴鼎;黄晟;徐润伊;沈非凡. 基于风光消纳的蒸汽循环卡诺电池储能及冷电联供系统: ZL 2024 1 0451561.7, 2024-06-14.
[2] 黄晟;王坤;张冀;马伯;黄晓辉. 一种强化型同步散热定子结构: ZL 2023 1 0371585.7, 2024-02-13.
[3] 张冀;黄晟;马伯;王坤;黄晓辉. 一种基于重力式微热管阵列的散热定子结构: ZL 2023 1 0371583.8, 2023-12-05.
[4] 黄晟;张冀;马伯;王坤;黄晓辉. 一种复用型模块化永磁风力发电机定子结构: ZL 2023 1 0371582.3, 2023-07-13.
五、代表性论文
[1] B. Ma, J. Xing*, S. Huang, K. Wang, J. Zhang*, Gang Lei, J. Zhu. Cooling System Design for High-PowerDensity Permanent Magnet Synchronous Motor Based on Micro Heat Pipe Array, IEEE Trans. Transp. Electrif. 2024.
[2] J. Zhang, D. Wu*, X. Huang*, X. Hu a, X. Fang, C. Wen. Comparative study on the organic rankine cycle off-design performance under different zeotropic mixture flow boiling correlations, Renew. Energy. 226 (2024) 120442.
[3] B. Xia, S. Huang, J. Zhang*, W. Zhang, W. Liao, J. Gao, X. Wu. An Improved High-Frequency Voltage Signal Injection-based Sensorless Control of IPMSM Drives With Current Observer, IEEE Trans. Transp. Electrif. 10 (2024) 5155-5167.
[4] J. Zhang, X. Hu, D. Wu*, X Huang*, X. Wang, Y. Yang*, C Wen*, A comparative study on design and performance evaluation of Organic Rankine Cycle (ORC) under different two-phase heat transfer correlations, Appl. Energy 350 (2023) 121724.
[5] J. Zhang, Z. Cao, S. Huang, X. Huang, Y. Han, C. Wen, J. H. Walther, Y. Yang, Solidification performance improvement of phase change materials for latent heat thermal energy storage using novel branch-structured fins and nanoparticles, Appl. Energy 342 (2023) 121158.
[6] X. Huang, J. Zhang*, F. Haglind, Experimental analysis of high temperature flow boiling of zeotropic mixture R134a/R245fa in a plate heat exchanger, Appl. Therm. Eng. 220 (2023) 119652.
[7] J. Zhang, T. Zhu. Systematic review of solar air collector technologies: Performance evaluation, structure design and application analysis, Sustain. Energy Technol. Assess. 54 (2022) 102885.
[8] J. Zhang, Z. Cao, S. Huang, X. Huang, K. Liang, Y. Yang, H. Zhang, M. Tian, M. Akrami, C. Wen, Improving the melting performance of phase change materials using novel fins and nanoparticles in tubular energy storage systems, Appl. Energy 322 (2022) 119416.
[9] X. Huang, J. Zhang*, F. Haglind, Experimental analysis of hydrofluoroolefin zeotropic mixture R1234ze(E)/R1233zd(E) condensation in a plate heat exchanger, Int. Commun. Heat Mass 135 (2022) 106073.
[10] X. Huang, J. Zhang*, F. Haglind, Experimental analysis of condensation of zeotropic mixtures from 70°C to 90°C in a plate heat exchanger, Int. J. Refrig. 137 (2022) 166–177.
[11] T. Zhu, J. Zhang*, A numerical study on performance optimization of a micro-heat pipe arrays-based solar air heater, Energy. 215 (2021) 119047.
[12] J. Zhang*, F. Haglind, Experimental analysis of high temperature flow boiling heat transfer and pressure drop in a plate heat exchanger, Appl. Therm. Eng. 196 (2021) 117269.
[13] J. Zhang*, B. Elmegaard, F. Haglind, Condensation heat transfer and pressure drop characteristics of zeotropic mixtures of R134a/R245fa in plate heat exchangers, Int. J. Heat Mass Transf. 164 (2021) 120577.
[14] J. Zhang*, B. Elmegaard, F. Haglind, Condensation heat transfer and pressure drop correlations in plate heat exchangers for heat pump and organic Rankine cycle systems, Appl. Therm. Eng. 183 (2021) 116231.
[15] J. Zhang*, M.E. Mondejar, F. Haglind, General heat transfer correlations for flow boiling of zeotropic mixtures in horizontal plain tubes, Appl. Therm. Eng. 150 (2019) 824–839.
[16] J. Zhang*, M.R. Kærn, T. Ommen, B. Elmegaard, F. Haglind, Condensation heat transfer and pressure drop characteristics of R134a, R1234ze(E), R245fa and R1233zd(E) in a plate heat exchanger, Int. J. Heat Mass Transf. 128 (2019) 136–149.
[17] J. Zhang, X. Zhu, M.E. Mondejar, F. Haglind, A review of heat transfer enhancement techniques in plate heat exchangers, Renew. Sustain. Energy Rev. 101 (2019) 305–328.
[18] J. Zhang*, A. Desideri, M.R. Kærn, T.S. Ommen, J. Wronski, F. Haglind, Flow boiling heat transfer and pressure drop characteristics of R134a, R1234yf and R1234ze in a plate heat exchanger for organic Rankine cycle units, Int. J. Heat Mass Transf. 108 (2017) 1787–1801.
[19] J. Zhang, Y. Diao, Y. Zhao, Y. Zhang, An experimental investigation of heat transfer enhancement in minichannel: Combination of nanofluid and micro fin structure techniques, Exp. Therm. Fluid Sci. 81 (2017) 21–32.
[20] J. Zhang, Y. Diao, Y. Zhao, Y. Zhang, Thermal-hydraulic performance of SiC-Water and Al2O3-water nanofluids in the minichannel, ASME J. Heat Transfer. 138 (2016) 1–9.
[21] J. Zhang, Y. Zhao, Y. Diao, Y. Zhang, An experimental study on fluid flow and heat transfer in a multiport minichannel flat tube with micro-fin structures, Int. J. Heat Mass Transf. 84 (2015) 511–520.
[22] J. Zhang, Y. Diao, Y. Zhao, Y. Zhang, Experimental study of TiO2-water nanofluid flow and heat transfer characteristics in a multiport minichannel flat tube, Int. J. Heat Mass Transf. 79 (2014) 628–638.
[23] J. Zhang, Y.H. Diao, Y.H. Zhao, Y.N. Zhang, An experimental study of the characteristics of fluid flow and heat transfer in the multiport microchannel flat tube, Appl. Therm. Eng. 65 (2014) 209–218.
[24] J. Zhang, Y. Diao, Y. Zhao, Y. Zhang, Q. Sun, Thermal-hydraulic performance of multiport microchannel flat tube with a sawtooth fin structure, Int. J. Therm. Sci. 84 (2014) 175–183.
[25] J. Zhang, Y.H. Diao, Y.H. Zhao, X. Tang, W.J. Yu, S. Wang, Experimental study on the heat recovery characteristics of a new-type flat micro-heat pipe array heat exchanger using nanofluid, Energy Convers. Manag. 75 (2013) 609–616.
[26] K. Wang, S. Huang, J. Zhang, B. Ma. J. Xing, G. Lei, J. Zhu. An Effective Cooling Scheme Using Micro Heat Pipe Array for Electrical Machines with Distributed Windings, IEEE Trans. Transp. Electrif. (2024).
[27] D. Wu, B. Ma*, J. Zhang, Y. Chen, F. Shen, X. Chen, C. Wen, Y. Yang*. Working fluid pair selection of thermally integrated pumped thermal electricity storage system for waste heat recovery and energy storage, Appl. Energy. 371 (2024) 123693.
[28] B Ma, Y Li, J Zheng, J Zhang, S Huang*, J Zhu, G Lei. Multiphysics Topology Optimization of SynRMs Considering Control Performance and Machinability, IEEE Trans. Transp. Electrif. (2024).
[29] B. Xia, S. Huang*, J. Zhang, W. Zhang, W. Liao, X. Huang, S. Huang. Encoderless Deadbeat Predictive Current Control for SPMSM Drives with Online Parameter Identification, IEEE Trans. Transp. Electrif. (2024).
[30] S. Yu, Y. Zhou*, Y. Wang*, J. Zhang, Q. Dong, J. Tian, J. Chen, F. Leng. Optimization Study of Cooling Channel for the Oil Cooling Air Gap Armature in a High-Temperature Superconducting Motor, Electronics 13 (2024) 97.
[31] X. Zheng*, J. Zhang, M.R. Kærn, F. Haglind. Analysis of prediction methods for non-equilibrium internal flow condensation heat transfer, Appl. Therm. Eng. 239 (2024) 122063.
[32] L. Wang, Z. Quan*, Y. Zhao, M. Yang, J. Zhang. Experimental research on the dynamic response characteristics of proton exchange membrane fuel cell thermal management using micro‑heat pipe array, J. Therm. Anal. Calorim. 148 (2023): 4377-4388.
[33] Y. Wang, S. Huang, X. Huang*, W. Liao, J. Zhang, B. Ma. An Angle-Based Virtual Vector Model Predictive Current Control for IPMSM Considering Overmodulation, IEEE Trans. Transp. Electrif. 10 (2023) 353-363.
[34] Y. Wang, W. Liao , S. Huang* , J. Zhang, M. Yang , C. Li , S. Huang. A Robust DPCC for IPMSM Based on a Full Parameter Identification Method, IEEE Trans. Ind. Electron. 70 (2023) 7695-7705.
[35] L. Wang, Z. Quan*, Y. Zhao, M. Yang , J. Zhang. Experimental investigation on thermal management of proton exchange membrane fuel cell stack using micro heat pipe array, Appl. Therm. Eng. 214 (2022) 118831.
[36] Q. Sun, Y. Diao*, Y. Zhao, S. Tang, J. Zhang, Z. Yu. Developing Convective Heat Transfer in Multiport Microchannel Flat Tubes, ASME J. Heat Transfer. 141 (2019) 062401.
[37] A. Desideri*, J. Zhang, M. R. Kærn, T. S. Ommen, J. Wronski,V. Lemort, F. Haglind. An experimental analysis of flow boiling and pressure drop in a brazed plate heat exchanger for organic Rankine cycle power systems. Int. J. Heat Mass Transf. 113 (2017) 6–21.
[38] Y. Diao, C. Li, J. Zhang, Y. Zhao, Y. Kang. Experimental investigation of MWCNT–water nanofluids flow and convective heat transfer characteristics in multiport minichannels with smooth/micro-fin surface, Powder Technology 305 (2017) 206–216.
[39] C. Zhao, S. Zheng, J. Zhang, Y. Zhang. Exergy and economic analysis of organic rankine cycle hybrid system utilizing biogas and solar energy in rural area of China, International Journal of Green Energy 14 (2017).
[40] Y. Diao, Y. Liu, J. Zhang, L. Guo, Y.H. Zhao, S. Wang. Effect of electric field on the enhanced heat transfer characteristic of an evaporator with multilayered sintered copper mesh. Journal of Electrostatics 73 (2015) 26–32.