姚钊

一、基本情况

姚钊,男,博士,湖南大学电气与信息工程学院助理教授,博士/硕士研究生导师。机器人视觉感知与控制技术国家工程研究中心副研究员,王耀南院士、刘敏教授手术机器人团队核心成员。本科毕业于河北工业大学,硕博毕业于复旦大学。主要研究方向为:超声图像的识别与生成;全片扫描病理图像分析;多模态医学图像分析。以第一作者/共同第一作者在Nature CommunicationseBioMedicine等期刊发表多篇论文。担任Nature BME, IEEE JBHI, MICCAI等期刊和会议审稿人。


主页: https://yyyzzzhao.github.io

Google scholar: https://scholar.google.com/citations?hl=zh-CN&user=4s3to8IAAAAJ


团队常年招收硕士、博士等,有志于从事手术机器人视觉、控制,医学图像处理等领域的同学请提前联系、沟通!

本人将提供详细的指导,积极推荐学生交流、参会,共同进步!

手机:15216626501(微信同) email: yaozhao24@hnu.edu.cn

二、研究方向

1)超声图像的生成;

2)全片扫描病理图像多示例学习;

3)医学图像多模态融合方法;

致力于开发计算机算法解决临床问题,与国内多家高水平三家医院保持良好合作。

三、教育工作经历

2024.06-至今 湖南大学,电气与信息工程学院,助理教授

2020.09-2024.06 复旦大学,电子信息,博士

2023.09-2024.04 香港理工大学,BME,联培

2017.09-2020.03 复旦大学,电子与信息工程,硕士

2013.09-2017.06 河北工业大学,电子信息工程,学士

四、主持科研项目

1.中央高校基本业务费     主持

五、代表性成果

代表论文

[1] Zhao Yao*, Yuanyuan Wang, Jinhua Yu, Jianqiao Zhou, et.al. Virtual elastography ultrasound via generative adversarial network for breast cancer diagnosis. Nature Communications 14, 2023. (Nature子刊);

[2] Xueyi Zheng*, Zhao Yao*, Yuanyuan Wang, Jinhua Yu, Jianhua Zhou, et.al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nature Communications 11, 2020. (Nature子刊,共一,ESI高被引);

[3] Yini Huang*, Zhao Yao*, Yuanyuan Wang, Jinhua Yu, Jianhua Zhou, et.al. Deep learning radiopathomics based on preoperative US images and biopsy whole slide images can distinguish between luminal and non-luminal tumors in early-stage breast cancers. eBioMedicine, 94, 2023. (The Lancet子刊,共一);

[4] Zhao Yao*, Jinhua Yu, Wenping Wang, et.al. Preoperative diagnosis and prediction of hepatocellular carcinoma: Radiomics analysis based on multi-modal ultrasound images. BMC Cancer, 18, 2018;

[5] Mengxin Tian*, Zhao Yao*, Jinhua Yu, Xuefei Wang, et al. DeepRisk network: an AI-based tool for digital pathology signature and treatment responsiveness of gastric cancer using whole-slide images. Journal of Translational Medicine, 22, 2024;

[6] Jieyang Jin*, Zhao Yao*, Jinhua Yu, Rongqin Zheng, et al. Deep learning radiomics model accurately predicts hepatocellular carcinoma occurrence in chronic hepatitis B patients: a five-year follow-up. American journal of cancer research, 11, 2021;

[7] Jinhua Yu, Zhao Yao, Ting Luo et al. Augmented reality elastography ultrasound via generate adversarial network for breast cancer diagnosis, 13 June 2022, PREPRINT

[8] Chengqian Zhao, Zhao Yao, et al. TASL-Net: Tri-Attention Selective Learning Network for Intelligent Diagnosis of Bimodal Ultrasound Video. ArXiv abs/2409.01557 (2024): n. pag

发明专利

1.余锦华,姚钊,汪源源等。应变弹性超声图像合成系统和方法,202211042951.6。(实审)